A New Kind of Deformed Hermite Polynomials and Its Applications ∗
نویسنده
چکیده
A new kind of deformed calculus was introduced recently in studying of parabosonic coordinate representation. Based on this deformed calculus, a new deformation of Hermite polynomials is proposed, its some properties such as generating function, orthonormality, differential and integral representaions, and recursion relations are also discussed in this paper. As its applications, we calculate explicit forms of parabose squeezed number states, derive a particularly simple subset of minimum uncertainty states for parabose amplitude-squared squeezing, and discuss their basic squeezing behaviours.
منابع مشابه
Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملBernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملOn composition of generating functions
In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...
متن کاملA new generalization of Apostol type Hermite–Genocchi polynomials and its applications
By using the modified Milne-Thomson's polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008